

Directing Bitopic or Bivalent Molecules to Dopamine D₃ Receptors for the Treatment of Substance Use Disorders

Amy Hauck Newman, Ph.D.

Scientific Director

NIDA – IRP

http://irp.drugabuse.gov/Newman.php

🥑 @anewman2014

Penn-Yale Addiction Center of Excellence Addictions Seminar Series April 12, 2021

2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts

Amy Hauck Newman,^{*,†©} Francisco O. Battiti,[†] and Alessandro Bonifazi^{†©}

J. Med. Chem. 2020, 62(20) 9061-9078.

Aedicina

The concept: bivalent ligands

Phil Portoghese

Erez, M.; Takemori, A. E.; Portoghese, P. S. *J. Med. Chem.* 1982, *2*5, 847.; Portoghese, P. S. et al., *Life Sci.* 1982, *31*, 1283.

The concept: bitopic ligands

Bridging the gap: bitopic ligands of G-protein-coupled receptors

J. Robert Lane, Patrick M. Sexton, and Arthur Christopoulos

TIPS 2013, 34, 59.

The design:

Linker

Responsible for unique binding interactions

Helps optimal ligand binding pose and consequent receptor conformations

Often responsible for modulating allosteric profiles and enhancing functional selectivity

Newman, et al., J. Med. Chem. 2020, 62(20) 9061-9078

Why D_3R ?

- Unlike D_2R , D_3R expression is largely localized in the mesolimbic brain region
- Reward experience induced by drugs of abuse is intrinsically connected to increased dopamine levels within this pathway
- D₃R blockade results in inhibition/reduction of selfadministration of nicotine, cocaine, alcohol, methamphetamine, and heroin (Heidbreder and Newman, 2010)

Heidbreder and Newman, *Ann. N.Y. Acad. Sci.* (2010) Koob et al. *Science* (1997)

NIDA's medication development priorities in response to the Opioid Crisis: ten most wanted

Kurt Rasmussen¹, David A. White¹ and Jane B. Acri¹

Neuropsychopharmacology (2019) 44:657-659; https://doi.org/10.1038/s41386-018-0292-5

Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges

Ewa Galaj, Amy Hauck Newman, Zheng-Xiong Xi*

Neuroscience and Biobehavioral Reviews 114 (2020) 38–52

Neuroscience

Targeting the D₃R receptor for Substance Use Disorders

- Small molecule SAR has led to the discovery of highly selective D₃R ligands,
- The D₃R crystal structure provided a template for structure-based investigation

Beyond Small-Molecule SAR: Using the Dopamine D3 Receptor Crystal Structure to Guide Drug Design

Thomas M. Keck^{*}, Caitlin Burzynski^{*}, Lei Shi[†], Amy Hauck Newman^{*,1}

Advances in Pharmacology, Emerging Targets and Therapeutics for the Treatment of Psychostimulant Drug Abuse, **2014**, 69, 267-300

Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

Ellen Y. T. Chien,¹ Wei Liu,¹ Qiang Zhao,¹ Vsevolod Katritch,² Gye Won Han,¹ Michael A. Hanson,³ Lei Shi,⁴ Amy Hauck Newman,⁵ Jonathan A. Javitch,⁶ Vadim Cherezov,¹ Raymond C. Stevens^{1*}

The current opioid crisis in the United States

Targeting the D₃R for Opioid Use Disorder

High Affinity Dopamine D₃ Receptor (D₃R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D₃R Knockout Mice

Comfort A. Boateng,^{†,⊥} Oluyomi M. Bakare,^{†,⊥} Jia Zhan,^{†,#} Ashwini K. Banala,[†] Caitlin Burzynski,[†] Elie Pommier,[†] Thomas M. Keck,^{†,‡} Prashant Donthamsetti,^{||} Jonathan A. Javitch,^{||} Rana Rais,[§] Barbara S. Slusher,[§] Zheng-Xiong Xi,[†] and Amy Hauck Newman^{*,†}

J. Med. Chem. 2015, 58(15) 6195-6213.

Comfort Boateng

VK4-116 is a highly selective D₃R antagonist

Vivek Kumar

Kumar et al, *JMC*, 2016, 59, 7634.

Pretreatment with VK4-116 dose-dependently decreases oxycodone self administration in rats and had no effect on sucrose

Zhi-Bing You, Ewa Galaj and Zheng-Xiong Xi

You et al., Neuropsychopharmacology, 2019, 44, 1415.

VK4-116 attenuates oxycodone induced reinstatement of drug seeking behavior Oxy 1 mg/kg

You et al., *Neuropsychopharmacology* 2019, 44, 1415.

VK4-116 prevents dose escalation in oxycodone self administering male and female rats

Olivier George & Giordano de Guglielmo, Scripps/UCSD

De Guglielmo et l. Front. Behav. Neurosci 2020, 23, 292.

Pretreatment with VK4-116 inhibits acquisition of oxycodone self administration

You et al., Neuropsychopharmacology 2019, 44, 1415.

Pretreatment with VK4-116 enhances the antinociceptive effects of low doses oxycodone (0.5-2 mg/kg) in the hot plate test

You et al., Neuropsychopharmacology 2019, 44, 1415.

Does VK4-116 have translational potential?

Time (min)

Alex Gadiano and Rana Rais, JHU

VK4-116 augments oxycodone antinociception in rhesus monkeys

Matt Banks, VCU

VK4-40 is a highly selective D₃R partial agonist

hD₃R EC₅₀=2.6 nM (18%) hERG IC50=1.4 μM

Kumar et al, JMC, 2016, 59, 7634.

Synthesis of VK4-116 and VK4-40 enantiomers

Anver Shaik

Shaik et al., JMC, 2019, 24, 9061.

D_2R and D_3R binding data

	[³ H]-N-methylspiperone competition ^a			
Compounds	D ₂ R	D ₃ R		
	<u>K_i ± SEM (nM)</u>	<u>K_i ± SEM (nM)</u>	D_3/D_2	
(<i>R</i>)-VK04-116	10200 ± 1870	5.97 ± 1.19	1709	
(<i>S</i>)-VK04-116	11600 ± 1150	33.4 ± 8.46	347	
VK04-116	11400 ± 3270	6.84 ± 1.18	1667	
(<i>R</i>)-VK04-40	68.1 ± 12.3	0.245 ± 0.0915	278	
(<i>S</i>)-VK04-40	200 ± 57.9	0.700 ± 0.286	286	
VK04-40	119 ± 11.1	0.351 ± 0.114	339	

Alessandro Bonifazi

Adrian Guerrero

Shaik et al., JMC, 2019, 24, 9061.

D_2R and D_3R binding data

	[³ H]-N-methylspiperone competition ^a			
Compounds	D ₂ R	D ₃ R		
	<u>K_i ± SEM (nM)</u>	<u>K_i ± SEM (nM)</u>	D_3/D_2	
(<i>R</i>)-VK04-116	10200 ± 1870	5.97 ± 1.19	1709	
(<i>S</i>)-VK04-116	11600 ± 1150	33.4 ± 8.46	347	\sim D ₃ R antagonists
VK04-116	11400 ± 3270	6.84 ± 1.18	1667	
(<i>R</i>)-VK04-40	68.1 ± 12.3	0.245 ± 0.0915	278	 D₃R antagonist
(<i>S</i>)-VK04-40	200 ± 57.9	0.700 ± 0.286	286	
VK04-40	119 ± 11.1	0.351 ± 0.114	339	D_3 R partial agonists

Data from NIDA CTDP

VK4-116 is highly metabolically stable in rat liver microsomes

VK4-40 is highly metabolically stable in rat liver microsomes

VK4-40

R-and *S*-VK4-116 are both orally available and highly brain penetrant

	Plasma (10mg/kg)	Brain (10mg/kg)
Area=	2201	8412

	Plasma (10mg/kg)	Brain (10mg/kg)
Area=	1068	4360

Shaik et al., JMC, 2019, 24, 9061.

R-and *S*-VK4-40 are both orally available and highly brain penetrant

The brain to plasma ratios were similar for each enantiomeric pair, but VK4-40 demonstrated higher ratios overall.

Shaik et al., JMC, 2019, 24, 9061.

R-VK4-40 reduces oxycodone self administration

Chloe Jordan

Jordan et al., Neuropharmacology 2019, 158, 107609.

R-VK4-40 augments oxycodone-induced analgesia

Jordan et al., Neuropharmacology 2019, 158, 107609.

Earlier generations of D_3R antagonists increased blood pressure, especially in the presence of cocaine

Appel & Acri, 2016; 2017

Neither R-VK4-40 nor R-VK4-116 exacerbate cocaine's cardiovascular effects

64 AC

Chuck Schindler

Chloe Jordan

Jordan et al., JPET, 2019, 371, 602.

R-VK4-40 and R-VK4-116 attenuate oxycodone's cardiovascular effects

SUMMARY-1

- VK4-116 and VK 4-40 are highly selective bitopic D₃R antagonists/partial agonists
- Enantiomers have been synthesized; binding, metabolism and PK studies are complete
- They do not bind to opioid ($\mu,\,\delta,\,\kappa)$ receptors, thus the mechanism appears to be through D_3R blockade
- Significant and promising behavioral data have been collected on the antagonists (±)VK4-116 and *R*-VK4-40 in rats. Behavioral evaluation of a new set of 3-F analogues is underway
- Neither R-VK4-40 nor R-VK4-116 adversely affect peripheral biometrics or cardiovascular effects of oxycodone OR cocaine.
- Further development is underway to advance our lead molecules to clinical trials

Newman, A. H., Kumar V., Shaik, A. Dopamine D3 receptor selective antagonists/partial agonists; method of making and uses thereof. *Int. Patent Application filed 3-8-2017*. Newman, A. H., Kumar V., Shaik, A. Dopamine D3 receptor selective antagonists/partial agonists and uses thereof. *Provisional Patent Application filed 10-7-2018*.

The challenge:

Why D₃R Agonists?

• Therapeutic Agents:

Potentially useful in treating locomotor associated diseases:

- Parkinson's Disease, Restless Leg Syndrome
- Pharmacological Tools:

Develop selective ligands that allow pharmacological studies of D3R function.

Commonly used in vitro and in vivo:

Can we apply the bitopic concept to D_3R agonists?

and efficacy

D₃R Bitopic Agonists: Design

Primary Pharmacophore Selection:

(+)-PD128,907 hD2R Ki = 20.5 nM hD3R Ki = 1.69 nM D2R/D3R = 12.1 PF592,379 hD2R Ki = 1740 nM hD3R Ki = 185 nM D2R/D3R = 9.41

Battiti et al, ACSMCL 2020, 11, 1956.

Alessandro Bonifazi, Francisco Battiti & Sophie Cemaj

D₃R Bitopic Agonists: PF592,379 Based

Linker: more than just a link

Javier Garcia Nafria, BIFI Battiti Cemaj, Guerrero et al. JMC, 2019 62, 6287

SUMMARY-2

- Bitopic agonists based on PD128,907 and PF 592,379 have been synthesized
- We discovered that the 2*S*,5*S* stereochemistry in the PF primary pharmacophore coupled with the privileged 2-indoleamide as the secondary pharmacophore and a chiral cyclopropyl linker gave the bitopic analogue, **FOB02-04** the most D_3R -selective full agonist reported to date (EC₅₀=4.15 nM; 78%)
- Chirality in the primary pharmacophore and the linker matter!
- A cryo-EM structure would be the first to use a bitopic agonist

Our latest foray into bivalent molecules:

Novel Dual-Target Mu Opioid (MOR) and Dopamine D_3 Receptor (D_3R) Ligands as Potential Non-Addictive Pharmacotherapeutics for Pain Management

Alessandro Bonifazi,^{†*} Francisco O. Battiti,[†] Julie Sanchez,[‡] Saheem Zaidi,[⊥] Eric Bow,[§] Mariia Makarova,[§] Jenny Lam,^{†#} Rana Rais,[#] Kenner Rice,[§] Vsevolod Katritch,[⊥] Meritxell Canals,[‡] J. Robert Lane,[‡] Amy Hauck Newman^{†*}

Seva Katritch & Saheem Zaidi, USC

Designing bivalent MOR/D₃R molecules for the treatment of pain and OUD

- Based on SAR at both MOR and D₃R, we have synthesized a large series of novel bivalent and bitopic ligands
- In collaboration with the Rice group, we have incorporated novel MOR agonists with both primary and secondary pharmacophores for D₃R
- Several lead compounds have been discovered with nM affinities for both MOR and D₃R
- The active molecules are all bivalent (as opposed to bitopic)

Alessandro Bonifazi & Francisco Battiti

Novel MOR-D₃R ligands range in efficacies

Meri Canals & Rob Lane U. Nottingham

SUMMARY-3

- We have discovered several bivalent MOR/D₃R partial agonists with nM affinities
- Computational studies are ongoing to elucidate key ligandreceptor interactions as a source for the wide range of affinities observed for structurally similar compounds
- Functional studies have been conducted to evaluate efficacy and G-protein vs beta-arrestin bias
- *In vivo* studies are being conducted on our 3 lead compounds
- And, of course we are designing 2nd generation compounds, further investigating novel chiral/cyclic linkers, new primary pharmacophores and improving druggability

Bonifazi et al., manuscript in revision.

Μ

NEWMAN

Medicinal Chemistry:

Alessandro Bonifazi, Francisco Battiti, Vivek Kumar, Anver Shaik, Adrian Guerrero, Sophie Cemaj, JJ Cao – NIDA-IRP

Computational Chemistry:

Lei Shi – NIDA-IRP Seva Katritich - USC

Pharmacology:

Zheng-Xiong Xi, Zhi-Bing You, Chloe Jordan, Guo-Hua Bi, Ewa Galaj, Bree Humburg, Pramisha Adhikari, Hideaki Yano - NIDA-IRP Mike Nader – Wake Forest Matt Banks, VCU Olivier George UCSD

PK and Metabolism:

Barbara Slusher, Rana Rais – JHU Jenny Lam, Alex Gadiano – NIDA-IRP, JHU

